Magnetic Resonance Neuroimaging Findings in High-altitude Cerebral Edema (HACE) and Probable Correlation with its Temporal Evolution and Pathogenesis.
Main Article Content
Keywords
High-altitude illness, Amarnath yatra pilgrims, high-altitude pulmonary edema, high-altitude cerebral edema, cerebral microbleeds, susceptibility weighted imaging;
Abstract
Background: High-altitude illness (HAI) is a spectrum continuum ranging from innocuous high-altitude headache (HAH) to severe, potentially fatal high-altitude cerebral edema (HACE) with acute mountain sickness (AMS) and high-altitude pulmonary edema (HAPE) in the middle of the gamut. MRI brain findings in such patients have prognostic implications, especially the diffusion and susceptibility-weighted imaging.
Methodology: Twenty-one devotees visiting a high-altitude cave temple, in whom there was a clinical suspicion of high-altitude cerebral edema after the ascent, were included in this study. All the patients met the criteria for diagnosis of acute mountain sickness (AMS) as well as HACE. MRI brain was done in all 21 patients with special emphasis on diffusion and susceptibility-weighted imaging.
Results: Diffusion restriction with T2/FLAIR hyperintensity was present in the splenium of the corpus callosum in all 21 patients. Other sites involved were centrum semiovale and deep white matter (90.5%), middle cerebellar peduncles (66.7%), and posterior limb of the internal capsule (57%). SWI revealed multiple tiny cerebral microbleeds in splenium, deep white matter, and middle cerebellar peduncles.
Conclusion: This study suggests the evolution of diffusion restriction, T2/FLAIR hyperintensity, and cerebral microbleedsin the splenium of the corpus callosum and white matter in HACE corresponds well with the temporal evolution of cytotoxic, ionic,and vasogenic cerebral edema underpinning the role of brain water dyshomeostasis central to the pathogenesis of HACE.
References
2. Hackett PH, Yarnell PR, Hill R, Reynard K, Heit J, McCormick J. High-altitude cerebral edema evaluated with magnetic resonance imaging: clinical correlation and pathophysiology. Jama. 1998 Dec 9;280(22):1920-5.
3. Syed VS, Sharma S, Singh RP. Determinants of acclimatisation in high altitude. Medical Journal Armed Forces India. 2010 Jul 1;66(3):261-5.
4. Luks AM, Swenson ER, Bärtsch P. Acute high-altitude sickness. European Respiratory Review. 2017 Mar 31;26(143).
5. "Amarnathji Yatra - a journey into faith". Official Web Site of Jammu and Kashmir Tourism. Archived from the original on 16 June 2006. Retrieved 15 June 2006.
6. Jensen JD, Vincent AL. High altitude cerebral edema.
7. Zelmanovich R, Pierre K, Felisma P, Cole D, Goldman M, Lucke-Wold B. High altitude cerebral edema: improving treatment options. Biologics. 2022 Mar 17;2(1):81-91.
8. Davis C, Hackett P. Advances in the prevention and treatment of high altitude illness. Emergency Medicine Clinics. 2017 May 1;35(2):241-60.
9. Zafren K, Pun M, Regmi N, Bashyal G, Acharya B, Gautam S, Jamarkattel S, Lamichhane SR, Acharya S, Basnyat B. High altitude illness in pilgrims after rapid ascent to 4380 M. Travel Medicine and Infectious Disease. 2017 Mar 1;16:31-4.
10. Gallagher SA, Hackett PH. High-altitude illness. Emergency Medicine Clinics. 2004 May 1;22(2):329-55.
11. Wu T, Ding S, Liu J, Jia J, Dai R, Liang B, Zhao J, Qi D. Ataxia: an early indicator in high altitude cerebral edema. High Altitude Medicine & Biology. 2006 Dec 1;7(4):275-80.
12. Estrada VH, Franco DM, Medina RD, Garay AG, Martí‐Carvajal AJ, Arevalo‐Rodriguez I. Interventions for preventing high altitude illness: Part 1. Commonly‐used classes of drugs. Cochrane Database of Systematic Reviews. 2017(6).
13. Turner RE, Gatterer H, Falla M, Lawley JS. High-altitude cerebral edema: its own entity or end-stage acute mountain sickness?. Journal of Applied Physiology. 2021 Jul 1;131(1):313-25.
14. Kimelberg HK. Water homeostasis in the brain: basic concepts. Neuroscience. 2004 Jan 1;129(4):851-60.
15. Hackett PH, Roach RC. High altitude cerebral edema. High altitude medicine & biology. 2004 May 1;5(2):136-46.
16. Bauer AT, Bürgers HF, Rabie T, Marti HH. Matrix metalloproteinase-9 mediates hypoxia-induced vascular leakage in the brain via tight junction rearrangement. Journal of Cerebral Blood Flow & Metabolism. 2010 Apr;30(4):837-48.
17. Himadri P, Kumari SS, Chitharanjan M, Dhananjay S. Role of oxidative stress and inflammation in hypoxia-induced cerebral edema: a molecular approach. High Altitude Medicine & Biology. 2010 Oct 1;11(3):231-44.
18. Lawley JS, Oliver SJ, Mullins PG, Macdonald JH. Investigation of whole-brain white matter identifies altered water mobility in the pathogenesis of high-altitude headache. Journal of Cerebral Blood Flow & Metabolism. 2013 Aug;33(8):1286-94.
19. Luks AM, Swenson ER, Bärtsch P. Acute high-altitude sickness. European Respiratory Review. 2017 Mar 31;26(143).
20. Wu WC, Wong EC. Feasibility of velocity selective arterial spin labeling in functional MRI. Journal of Cerebral Blood Flow & Metabolism. 2007 Apr;27(4):831-8.
21. Lawley JS, Oliver SJ, Mullins PG, Macdonald JH. Investigation of whole-brain white matter identifies altered water mobility in the pathogenesis of high-altitude headache. Journal of Cerebral Blood Flow & Metabolism. 2013 Aug;33(8):1286-94.
22. Simka M, Latacz P, Czaja J. Possible role of glymphatic system of the brain in the pathogenesis of high-altitude cerebral edema. High Altitude Medicine & Biology. 2018 Dec 1;19(4):394-7.
23. Clément T, Rodriguez‐Grande B, Badaut J. Aquaporins in brain edema. Journal of neuroscience research. 2020 Jan;98(1):9-18.