Comparative study of the severity of Covid-19 infection between female and male patients
Main Article Content
Keywords
Biological Differences, Severity, Gender, COVID-19
Abstract
Background: Different studies have identified the prognostic factors of COVID-19 infection. These studies have revealed that COVID-19 infection is more severe in males than in females. The aim of our study was to compare the severity of COVID-19 infection between males and females in terms of clinical, biological, radiological, and evolutionary aspects.
Methodology: This is a cross-sectional observational study conducted in patients hospitalized with COVID-19 infection over a 6-month period from 1 August 2021 to 1 February 2022.
Results: The comparison of clinical, biological, radiological, and evolutionary severity factors of covid-19 infection between the two sexes revealed that this infection was more severe in males. Statistically significant differences were noted for the rate of high dimers (p =0.01) and for lung involvement greater than 25% on chest CT (Computed tomography) (p =0.008).
Conclusion: The severity of covid-19 infection in men is due to biological differences between men and women in the renin-angiotensin system, the immune system, genetics, and sex hormones. Further research into the pathophysiological mechanisms behind this finding is needed.
References
[2] Gralinski LE, Menachery VD. Return of the coronavirus: 2019-ncov. Viruses 2020; 2(2):135. doi: 10.3390/v12020135.
[3] Ge HP, Wang XF, Yuan XN, Xiao G, Wang CZ, Deng TC, et al. The epidemiology and clinical information about COVID-19. Eur J Clin Microbiol Infect Dis. 2020;39(6):1011-1019.
[4] Waechter C. Manifestations cliniques et paracliniques de la COVID-19, diagnostic virologique [Clinical and paraclinical features of COVID-19, virological diagnosis]. Npg. 2021 Oct;21(125):297–303.
[5] Zhonghua L, Xing B, Xue ZZ. Epidemiology Working Group for NCIP Epidemic Response, Chinese Center for Disease Control and Prevention The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China Front. Mol. Biosci 2020; 41(2):145–15.
[6] Greef JD, Pothen L, Yildiz H, Poncin W, Reychler G, Brilot S et al. COVID-19: infection par le virus SARS-CoV-2. Médecine interne et maladies infectieuses 2020; 139 (05-06): 290-301
[7] Muller M, Bulubas I, Vogel T. Les facteurs pronostiques dans la Covid-19 [Prognostic factors in COVID-19]. Npg. 2021 ; 125: 304–12.
[8] Scully EP, Haverfield J, Ursin RL, Tannenbaum C, Klein SL. Considering how biological sex impacts immune responses and covid-19 outcomes. Nat Rev Immunol. 2020;20(7):442-447.
[9] Haitao T, Vermunt JV, Abeykoon J, Ghamrawi R, Gunaratne M, Jayachandran M, Narang K, Parashuram S, Suvakov S, Garovic VD. COVID-19 and Sex Differences: Mechanisms and Biomarkers. Mayo Foundation for Medical Education and Research. 2020; 95(10): 2189-2203. https://doi.org/10.1016/j.mayocp.2020.07.024
[10] Gebhard C, Regitz-Zagrosek V, Neuhauser HK, Morgan R, Klein SL. Impact of sex and gender on COVID-19 outcomes in Europe. Biology of Sex Differences. 2020; 11:29-41. https://doi.org/10.1186/s13293-020-00304-9
[11] Pradhan A, Olsson PE. Sex differences in severity and mortality from COVID-19: are males more vulnerable? Biology of Sex Differences. 2020; 11:53-63. https://doi.org/10.1186/s13293-020-00330-7
[12] Ministère de la santé, direction de l’épidémiologie et de lutte contre les maladies. Covid-19 et infection au SARS-CoV-2 Manuel de procédures de veille et de riposte. Version Novembre 2020. 1-13.
[13] Belyamani L, El Adib AR, Jidane S, Kohen JE, Azzouzi A, Aboulhassan T, et al. Prise en charge des patients suspects ou confirmés COVID-19 en unités d’hospitalisation (y compris les unités de
soins intensifs des urgences et la réanimation). Société Marocaine de Médecine d’Urgence (SMMU) & Société Marocaine d’Anesthésie d’Analgésie et de Réanimation (SMAAR) ; Version Novembre 2020 : 1-6.
[14] Parohan M, Yaghoubi S, Seraji A, Javanbakht MH, Sarraf P, Djalali M. Risk factors for mortality in patients with Coronavirus disease 2019 (COVID-19) infection: a systematic review and meta-analysis of observational studies. Aging Male 2020; 23(5): 1416-1424.
[15] Bilgir F, Çalık Ş, Demir İ, Bilgir O. Roles of certain biochemical and hematological parameters in predicting mortality and ICU admission in COVID-19 patients. Rev Assoc Med Bras. 2021; 9: 67-73.
[16] Cavuşoğlu Türker B, Türker F, Ahbab S, Hoca E, Urvasızoğlu AO, Cetin SI, Ataoğlu HE. Evaluation of the Charlson Comorbidity Index and Laboratory Parameters as Independent Early Mortality Predictors in Covid 19 Patients. Int J Gen Med. 2022; 27: 6301-6307.
[17] Promislow DE. A geroscience perspective on COVID-19 mortality. J Gerontol A Biol Sci Med Sci. 2020. https://doi.org/10.1093/gerona/glaa094
[18] Shim E, Tariq A, Choi W, Lee Y, Chowell G. Transmission potential and severity of COVID-19 in South Korea. Int J Infect Dis. 2020; 93: 339-44. https://doi.org/10.1016/j.ijid.2020.03.031
[19] Grasselli G, Zangrillo A, Zanella A, Antonelli M, Cabrini L, Castelli A, et al. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the -lombardy region, Italy. JAMA. 2020; 323:1574–81.
[20] Puebla Neira D, Watts A, Seashore J, Polychronopoulou E, Kuo YF, Sharma G. Smoking and risk of COVID-19 hospitalization. Respir Med. 2021; 182:106414. doi: 10.1016/j.rmed.2021.106414.
[21] Parohan M, Yaghoubi S, Seraji A, Javanbakht MH, Sarraf P, Djalali M. Risk factors for mortality in patients with Coronavirus disease 2019 (COVID-19) infection: a systematic review and meta-analysis of observational studies. Aging Male. 2020; 23(5): 1416-1424. doi: 10.1080/13685538.2020.1774748.
[22] Gheblawi M, Wang K, Viveiros A, Nguyen Q, Zhong JC, Turner AJ, et al. Angiotensin-converting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system. Circ Res. 2020; 126(10): 1456-1474.
[23] Patel VB, Clarke N, Wang Z, Fan D, Parajuli N, Basu R, et al. Angiotensin II induced proteolytic cleavage of myocardial ACE2 is mediated by TACE/ADAM-17: a positive feedback mechanism in the RAS. J Mol Cell Cardiol. 2014a; 66: 167-176.
[24] Patel VB, Zhong JC, Fan D, Basu R, Morton JS, Parajuli N, et al. Angiotensin-converting enzyme 2 is a critical determinant of angiotensin II-induced loss of vascular smooth muscle cells and adverse vascular remodeling. Hypertension. 2014b; 64: 157-164.
[25] Role of the ACE2/Angiotensin 1-7 Axis of the Renin-Angiotensin System in Heart Failure. Circ Res. 2016; 118: 1313-1326.
[26] Wang K, Gheblawi M, Oudit GY. Angiotensin Converting Enzyme 2: A Double-Edged Sword. Circulation 2020;142(5):426-428.
[27] Shang J, Ye G, Shi K, Wan Y, Luo C, Aihara H, et al. Structural basis of receptor recognition by SARS-CoV-2. Nature. 2020; 581:221–224.
[28] Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature. 2020; 581:215–220.
[29] Chen L, Hao G. The role of angiotensin-converting enzyme 2 in coronaviruses/influenza viruses and cardiovascular disease. Cardiovasc Res 2020a. doi: 10.1093/cvr/cvaa093.
[30] Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 2020. 395:565–574.
[31] Chen YY, Liu D, Zhang P, Zhong JC, Zhang CJ, Wu SL, et al. Impact of ACE2 gene polymorphism on antihypertensive efficacy of ACE inhibitors. J Human Hypertens. 2016; 30(12):766 771.
[32] Turner AJ. ACE2 Cell Biology, Regulation, and Physiological Functions. In: Unger T, Steckelings UM, dos Santos RAS, eds. The Protective Arm of the Renin Angiotensin System (RAS). Boston, MA: Academic Press. 2015:185-189.
[33] Tipnis SR, Hooper NM, Hyde R, Karran E, Christie G, Turner AJ. A Human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J Biol Chem. 2000; 275(43):33238-43
[34] Chappell MC, Marshall AC, Alzayadneh EM, Shaltout HA, Diz DI. Update on the angiotensin converting enzyme 2-angiotensin (1-7)-Mas receptor axis: fetal programing, sex differences, and intracellular pathways. Front Endocrinol (Lausanne). 2014; 4:201.
[35] Liu J, Ji H, Zheng W, Wu X, Zhu JJ, Arnold AP, et al. Sex differences in renal angiotensin converting enzyme 2 (Ace2) activity are 17beta-oestradioldependent and sex chromosome-independent. Biol Sex Differ. 2010;1(1):6.
[36] White MC, Fleeman R, Arnold AC. Sex differences in the metabolic effects of the renin-angiotensin system. Biology of Sex Differences. 2019; 10(1):31.
[37] Pinto BGG, Oliveira AER, Singh Y, Jimenez L, Goncalves ANA, Ogava RLT, et al. ACE2 expression is increased in the lungs of patients with comorbidities associated with severe COVID-19. J Infect Dis 2020; 222: 556-563.
[38] Chen J, Bai H, Liu J, Chen G, Liao Q, Yang J, et al. Distinct Clinical Characteristics and Risk Factors for Mortality in Female Inpatients with Coronavirus Disease 2019 (COVID-19): A Sex-stratified, Large-scale Cohort Study in Wuhan, China. Clinical Infectious Diseases. 2020; 71(12): 3188–95
[39] Petrilli CM, Jones SA, Yang J, ajagopalan H, O'Donnell L, Chernyak Y, et al. Factors associated with hospital admission and critical illness among 5279 people with coronavirus disease 2019 in New York City: prospective cohort study. BMJ. 2020; 369:1966.
[40] Zheng Z, Peng F, Xu B, Zhao J, Liu H, Peng J, et al. Risk factors of critical & mortal COVID-19 cases: A systematic literature review and metaanalysis. J Infect. 2020; 81(2):16-25.
[41] Kermali M, Khalsa RK, Pillai K, Ismail Z, Harky A. The role of biomarkers in diagnosis of COVID-19 d a systematic review. Life Sci. 2020; 254:117788.
[42] Qin L, Li X, Shi J, Yu M, Wang K, Tao Y, et al. Gendered effects on inflammation reaction and outcome of COVID-19 patients in Wuhan. J Med Virol. 2020. https://doi.org/10.1002/jmv.26137.
[43] Wei X, Xiao Y, Wang J, Chen R, Zhang W, Yang Y, et al. Sex Differences in Severity and Mortality Among Patients With COVID-19: Evidence from Pooled Literature Analysis and Insights from Integrated Bioinformatic Analysis. Pre-print, https://arxiv.org/abs/2003. 135472020. Accessed May 5, 2020.
[44] Su W, Qiu Z, Zhou L, Hou J, Wang Y, Huang F, ET AL. Sex differences in clinical characteristics and risk factors for mortality among severe patients with COVID-19: a retrospective study. AGING. 2020; 12 (19): 18833- 18843.
[45] Chen T, Wu D, Chen H, Yan W, Yang D, Chen G, et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ. 2020; 368:1091.
[46] Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 2020; 323(11):1061-1069.
[47] Yang X, Yang Q, Wang Y, Wu Y, Xu J, Yu Y, et al. Thrombocytopenia and its association with mortality in patients with COVID-19. J Thromb Haemost. 2020a; 18(6):1469-1472.
[48] Varga Z, Flammer AJ, Steiger P, Haberecker M, Andermatt R, Zinkernagel AS, et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020; 395 (10234): 1417-1418.
[49] Luo W, Yu H, Gou J, Li X, Sun Y, Li J, Liu L. Clinical pathology of critical patient with novel coronavirus pneumonia (COVID-19). Preprints. 2020: 2020020407.
[50] Ackermann M, Verleden SE, Kuehnel M, Haverich A, Welte T, Laenger F, et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in COVID-19. N Engl J Med. 2020; 383(2):120-128.
[51] Spiezia L, Boscolo A, Poletto F, Cerruti L, Tiberio I, Campello E, et al. COVID-19-related severe hypercoagulability in patients admitted to intensive care unit for acute respiratory failure. Thromb Haemost. 2020; 120(6): 998-1000.
[52] Panigada M, Bottino N, Tagliabue P, Grasselli G, Novembrino C, Chantarangkul V, et al. Hypercoagulability of COVID-19 patients in intensive care unit. A report of thromboelastography findings and other parameters of hemostasis. J Thromb Haemost. 2020;18(7):1738-1742.
[53] Zatroch I, Smudla A, Babik B, Tanczos K, Kobori L, Szabó Z, Fazakas J, et al. Procoagulation, hypercoagulation and fibrinolytic “shut down” detected with ClotPro_viscoelastic tests in COVID-19 patients. [In Hu.]. Orv Hetil. 2020; 161(22):899-907. DOI: 10.1556/650.2020.31870
[54] Helms J, Tacquard C, Severac F, Leonard-Lorant I, Ohana M, Delabranche X, et al. High risk of thrombosis in patients with severe SARS-
CoV-2 infection: a multicenter prospective cohort study. Intensive Care Med. 2020. https://doi.org/10.1007/s00134-020-06062-x.
[55] Viguier A, Delamarre L, Duplantier J, Olivot JM, Bonneville F. Acute ischemic stroke complicating common carotid artery thrombosis during a severe COVID-19 infection. J Neuroradiol. 2020. https://doi.org/10.1016/j.neurad.2020. 04.003.
[56] Kashi M, Jacquin A, Dakhil B, Zaimi R, Mahé E, Tella E, et al. Severe arterial thrombosis associated with Covid-19 infection. Thromb Res. 2020; 192:75-77. doi: 10.1016/j.thromres.2020.05.025.
[57] Bhatti AF, Leon LR, Labropoulos N, Rubinas TL, Rodriguez H, Kalman PG, et al. Free-floating thrombus of the carotid artery: Literature review and case reports. J Vasc Surg. 2007;45(1):199-205. doi: 10.1016/j.jvs.2006.09.057.
[58] Cui S, Chen S, Li X, Liu S, Wang F. Prevalence of venous thromboembolism in patients with severe novel coronavirus pneumonia. J Thromb Haemost. 2020;18(6):1421-1424.
[59] Snell DM, Turner JMA. Sex chromosome effects on male-female differences in mammals. Curr Biol. 2018; 28: 1313-1324.
[60] Schurz H, Salie M, Tromp G, Hoal EG, Kinnear CJ, Mo¨ ller M. The X chromosome and sex-specific effects in infectious disease susceptibility. Hum Genomics. 2019; 13:12.
[61] Robinson DP, Lorenzo ME, Jian W, Klein SL. Elevated 17b-estradiol protects females from influenza A virus pathogenesis by suppressing inflammatory responses. PLoS Pathog. 2011; 7:1002149.
[62] Nguyen DC, Masseoud F, Lu X, Scinicariello F, Sambhara S, Attanasio R. 17b- Estradiol restores antibody responses to an influenza vaccine in a postmenopausal mouse model. Vaccine. 2011; 29: 2515-2518.
[63] Pazos MA, Kraus TA, Mu~noz-Fontela C, Moran TM. Estrogen mediates innate and adaptive immune alterations to influenza infection in pregnant mice. PLoS One. 2012; 7: 40502.
[64] Vermillion MS, Ursin RL, Attreed SE, Klein SL. Estriol reduces pulmonary immune cell recruitment and inflammation to protect female mice from severe influenza. Endocrinology. 2018; 159: 3306-3320.
[65] Montopoli M, Zumerle S, Vettor R, Rugge M, Zorzi M, Catapano CV, et al. Androgen-deprivation therapies for prostate cancer and risk of infection by SARS-CoV-2: a populationbased study (N = 4532). Ann Oncol. 2020 ; 31:1040-1045.
[66] Chakravarty D, Nair SS, Hammouda N, Ratnani P, Gharib Y, Wagaskar V, et al. Sex differences in SARS-CoV-2 infection rates and the potential link to prostate cancer. Commun Biol. 2020; 3:12.
[67] Mjaess G, Karam A, Aoun F, Albisinni S, Roumeguere T. COVID-19 and the male susceptibility: the role of ACE2, TMPRSS2 and the androgen receptor. Prog Urol. 2020; 30: 484-487.